
SSC01-VIIIa-4

1
Steve Bernier 15th Annual/USU Conference on Small Satellites

A Virtual Ground Station Based on Distributed
Components for Satellite Communications

Steve Bernier
Communications Research Centre

3701 Carling Avenue
Ottawa, ON, Canada K2H 8S2

steve.bernier@crc.ca

Michel Barbeau
School of Computer Science

Carleton University
1125 Colonel By Drive

Ottawa, ON, Canada K1S 5B6
barbeau@scs.carleton.ca

Abstract. Communication with Low-Earth Orbit (LEO) satellites requires the set up of a ground
station which is a complex and costly installation. Moreover, a LEO satellite is accessible only
during certain time slots from a given ground station. In other words, access to LEO satellites is
on an intermittent basis and is constrained by the availability of ground stations.

The work presented in this paper aims at augmenting the accessibility to the services offered by
LEO satellites. We have devised a concept of virtual ground station available over the Internet. A
virtual ground station can be used by any client with a computer attached to the Internet which
augments the degree of accessibility. Besides, a virtual ground station and its clients don't have
to be collocated. A client can access a satellite as long as a remote virtual ground station has
access to it. As long as there are several virtual ground stations distributed at several locations,
this architecture augments the degree of accessibility to satellites.

The design of the virtual ground station is based on CORBA distributed components. The virtual
ground station has been developed using an application framework we have created, hence
reducing the amount of programming required to obtain it. Moreover, we have developed a client
satellite tracking software that uses our virtual ground station.

In this paper, we review the design and implementation of our virtual ground station concept. We
also present the companion client satellite tracking software that we have developed.

2
Steve Bernier 15th Annual/USU Conference on Small Satellites

1. Introduction

Since the launch of Sputnik in late 1957,
satellite communications (satcom) have come
a long way. From the transmission of a simple
beacon, years of improvements brought
satcom to the era of multimedia. Satellites are
now used for many applications ranging from
scientific earth and atmospheric studies to
military tactical communications. Over the
years, the number of satellites has constantly
increased and as a consequence there are now
more satcom services available.

However, the relative abundance of satcom
services does not necessarily mean easy
access. In fact, LEO satellites services have
always been rather difficult to use. One of the
reasons for this is the intricacy of the satellite
tracking process. This process requires the
simultaneous coordination of frequency
tuning, antenna pointing and data acquisition.
Only training can provide the skills required to
manually track a LEO satellite. Consequently,
helped by the emergence of personal
computers, software applications were
developed in order to address this issue. Such
applications facilitate the tracking process by
interfacing with the tracking equipment in
order to automate all of the manipulations.
The SatSy application1 developed by our
group represents an example of such an
application. Nowadays, most tracking
applications offer sophisticated graphical user
interfaces (GUI) and they effectively reduce
the tracking process to a few mouse clicks.

Nevertheless, those tracking applications don’t
address the most important problem in using
satcom services, which is the limited number
of ground stations. The basic reason why there
isn’t more ground stations is that they are
rather expensive and complex to install. In
addition, satcom antennas are quite
cumbersome in that they require adequate
space and have to be properly located. As of

now, like SatSy, the vast majority of tracking
applications are single computer applications.
This type of application can only be used from
the computer it is installed on. Since tracking
applications need to be installed on a
computer linked to tracking equipment, they
become just as much inaccessible as the
ground stations themselves. However, it is
possible to overcome this limitation by
connecting the tracking computers to a
network and by using a network-enabled
tracking application. This fairly new type of
application enables users to start tracking
sessions remotely from any computer
connected to the same network as the ground
station. When coupled to the Internet, this
solution significantly increases ground
stations accessibility.

To the best of our knowledge, our group has
created the very first Internet-enabled tracking
application. This software was devised in
1996 through a project called WATOO2. More
recently, similar applications were created3,4,5.
The WATOO software enables users to start
tracking sessions through the Internet. For
example, during demonstrations, WATOO
was often used to track the Russian Space
Station Mir from remote cities. Actually, it
was even used to record radio amateur
communications with MIR cosmonauts. As
opposed to a single computer tracking
application, a network-enabled version is
divided into two parts: a server and a client.
The server is very similar to the single
computer version except it doesn’t provide a
user interface. The interface is provided by the
client which is usually installed on remote
computers. In this design, the client is
responsible for sending commands to the
server (through the network) based on user
actions. The server is responsible for
interpreting the commands to control tracking
sessions. All the user needs is a computer
connected to the network and the client
application.

3
Steve Bernier 15th Annual/USU Conference on Small Satellites

However, networking one single ground
station isn’t enough. The true benefit of this
solution comes from networking many ground
stations from all around the world. This
enables a user to track a satellite no matter
where it is, as long as there is a ground station
in its footprint. Furthermore, with a sufficient
number of networked ground stations, it is
even possible to address another problem
related to LEO satcom services: the
intermittent nature of the services. In effect,
on average, satcom services are only available
a few times a day and usually for a maximum
of approximately 15 minutes. Thus, even
when an uninterrupted download of a file
requires less than one hour, it can take several
hours of elapsed time to download using a
LEO satellite. In other words, several passes
may be required to download a single file
from a LEO satellite. One way to improve this
situation is to consecutively use many
different remote ground stations. We call this
an extended tracking session.

The implementation of this solution requires a
widespread use of a network-enabled tracking
application. The first version of the WATOO
server is an example of an application that
could have been used to achieve this goal.
However, because it was platform dependent,
lots of modifications would have been
required for each different ground station.
Consequently, the WATOO software was
completely redesigned in 1998. The WATOO
server was developed such that it would be
fairly simple to customize it for different
ground stations. Also, technologies such as
CORBA and JAVA were used to provide as
much platform independence as possible. As
of the GUI client, it was redesigned to take
advantage of the new tracking server.

This paper presents the new design of the
WATOO software. The first section offers a
short overview of CORBA and distributed
objects. The following section presents the

design and implementation of our virtual
ground station. The last section presents the
GUI tracking client through a few screen
shots. Finally, this paper ends with a
conclusion and a couple ideas for future
works.

2. CORBA Basics

The Common Object Request Broker
Architecture (CORBA), is a specification
produced by the Object Management Group
(OMG) that addresses interoperability in
distributed heterogeneous environments. The
CORBA standard represents industry
consensus from more than 800 companies.
CORBA assumes a heterogeneous
environment in which clients and servers
implemented in different languages on
different platforms can interoperate. There are
many implementations of the CORBA
standard, some of them in the form of
commercial products that have demonstrated
strong market acceptance.

CORBA enables clients and servers to interact
together through a middleware called an
Object Request Broker (ORB). The ORB is
the mediator responsible for brokering
interactions between clients and servers. Its
job is to provide object location and access
transparency by facilitating clients’ use of
servers’ services. Since CORBA is object-
oriented, clients and servers are represented as
objects and services as methods. The set of
public services of a server object is
represented as an interface specification that
must be specified using the CORBA standard
Interface Definition Language (IDL).

Through the use of an IDL compiler, an
interface specification is compiled to generate
code into native language such as JAVA,
C++, SmallTalk and others. Among other
things, the IDL compiler generates a client

4
Steve Bernier 15th Annual/USU Conference on Small Satellites

proxy class and a server skeleton class. Both
classes are generated such that they can
interact together through an ORB. To be more
precise, an ORB is a set of classes that are
provided by the ORB vendor.

Figure 1 illustrates the process through which
an IDL interface specification (specification
for short) is transformed into objects.

Figure 1. Generation of the Proxy and Skeleton
Objects.

The proxy object represents a remote object
locally. For example, if a client object needs
to use the services of a remote object called
FOO, it actually uses the services of a local
FOO proxy. When accessed, the local proxy
forwards all method calls to the remote FOO
object using the ORB communication layer
(see Figure 2). The client object doesn’t know
where the remote object is located. To create
the proxy object, the generated proxy class is
compiled with no modifications whatsoever.
For the proxy to be accessed by the client
object, it has to be generated in the same

programming language. Therefore, if the
client object is implemented using JAVA, the
proxy class will have to be generated in JAVA
as well. This local proxy can then be used to
access a C++ remote object for which a C++
skeleton is needed as depicted in Figure 2.

Figure 2. Communications Between a Client and a
Remote Object.

To generate the JAVA FOO proxy class and
C++ skeleton class, different IDL compilers
are used. Figure 3 illustrates how this works.
As mentioned before, both the proxy and the
skeleton are generated such that they use the
ORB services to interact together.
Conceptually, an ORB is a communication
layer. To communicate, it uses a standard
protocol called General Inter-ORB Protocol
(GIOP). This protocol is completely
independent of programming languages and of
execution environments (it takes care of byte-
ordering issues). The ORB is responsible for
mapping the generic constructs of GIOP (ex:
method calls) to the native programming
language and execution environment it is
written for. Consequently, as shown in Figure
2, two ORBs are needed to enable
communications between a JAVA and a C++
object.

IDL Interface
Specification

IDL Compiler

Proxy
Class

Skeleton
Class

ORB
Classes

ORB
Classes

Compiler / LinkerCompiler / Linker

Proxy
Object

Skeleton
Object

ORB ORB

JAVA FOO
Proxy
Object

Java ORB

C++ FOO
Skeleton
Object

C++ ORB

Communication Bus (ex: Internet)
(GIOP)

JAVA
Client
Object

Local Remote

5
Steve Bernier 15th Annual/USU Conference on Small Satellites

Figure 3. Using Different IDL Compilers to Offer
Heterogeneity.

The skeleton class is where the developer
implements the services (methods) of the
server object. A generated skeleton is only
partially implemented and needs to be filled
in. As with the proxy, the implementation
language dictates which IDL compiler will be
used to generate the skeleton. In the FOO
example, the skeleton is implemented in C++.
The portion of the skeleton that is already
implemented pertains to all the ORB
interactions. This way the developer doesn’t
need to interact with the ORB at any time. All
that needs to be done is to implement the
methods representing the object’s services.
The generated code takes care of everything
else.

The only thing that remains to be explained is
how the local proxy finds the remote object.
This happens in three steps. First, the remote
object registers to a naming server. It does so
by using an ORB service. ORB vendors
provide naming servers as separate
applications. They keep track of the name and
location of every registered object. The second
step consists of the client finding the remote
object. The client object does this by querying
a naming server through an ORB service.

When the object is found, its reference is
returned to the client object where it is used to
create a proxy object. From there on, the client
object can invoke methods on the remote
object through the local proxy. There are
many ways to use naming servers. The easiest
way is to have clients and servers use the same
naming server. It is also possible to use many
different naming servers all connected
together into a federation but this falls out of
the scope of this basic.

In summary, using CORBA objects starts with
an IDL interface specification. The
specification is then compiled to generate
specific language bindings for the clients
(proxies) and the server (skeleton). The client
object is written such that it uses the local
proxy to get access to the server object’s
services. The services are implemented within
the skeleton and compiled into a server object.
The server object is registered to a naming
server so that the client object can find it using
a well-known name. The client object creates
a local proxy from a remote object reference
and starts invoking methods.

CORBA is fairly simple to use and provides
numerous advantages. It is available for many
different platforms, operating systems, and
programming languages. This technology has
matured over the last 10 years and it has been
used for many types of application ranging
from military real-time communications to
secure online banking.

The main reason why CORBA was used in the
second version of WATOO is its
programming language and execution
environment independence. Thus, the new
WATOO server is now composed of a
collection of CORBA objects that could all be
implemented with a different language. For
example, if one of our JAVA CORBA object
is considered not to be performing fast

IDL Interface
Specification

IDL Compiler
For IDL to JAVA

IDL Compiler
For IDL to C++

Java Proxy
Class

C++ Skeleton
Class

6
Steve Bernier 15th Annual/USU Conference on Small Satellites

enough, it could be reimplemented using C++
without any impacts on the remaining objects.

3. Creating a Virtual Ground Station

This section presents the concept of a virtual
ground station and offers a detailed
description of its design. The framework we
have developed to facilitate the creation of
virtual ground stations is described with an
example.

A virtual ground station is a software
representation of a real life ground station. It
is equipped with virtual equipement as a
transceiver, an antenna and a rotor controller.
Virtual equipment offers the same services its
real life counter part offers. For example, the
virtual transceiver can be turned on or off and
its mode and frequency can be set. Like a
ground station equipped with a tracking
application, the virtual ground station offers
services to start and stop tracking sessions. In
addition, it has an owner and it knows where
it’s located in terms of latitude, longitude, and
altitude.

Figure 4. Three Layers of Services

The services offered by a virtual ground
station can be grouped into two superimposed
layers corresponding to layers 1 and 2 of
Figure 4. Services contained in layer 1 pertain
to the control of tracking equipment. Layer 2
services deal with the computation of satellite
position, pass predictions, and such. The
virtual ground station does not provide
services of layer 3. These services are
implemented by end-user applications. The
WATOO GUI provides layer 3 services like

the plotting of an orbital trace on Earth
projections. The fact that both layers 1 and 2
are accessible from layer 3 offers a great
degree of flexibility for the creation of new
services.

The segregation of services into layers also
helps for the creation of an application
framework. This type of framework is a full
implementation of an application that can
easily be customized by the replacement of
specialized components only. For example,
the services of layer 1 will most likely have to
be customized for different ground stations as
opposed to services of layer 2. Consequently,
we have created a framework that dictates
how services of layer 2 interact with services
of layer 1. This way, services of layer 1 can
easily be replaced without changing anything
in layer 2. Moreover, the components
providing the layer 1 services have been
designed such that they only need to be
partially customized. As you will see in the
implementation section, the use of an
application framework coupled with
technologies like CORBA and JAVA
augments platform independence and
simplifies customization when necessary.

3.1 Analysis and Design

Figure 5. Layer 1 Use Cases

This subsection starts with a high-level
description of the use-cases regarding services
a virtual ground station must provide. Then, it
describes a simplified diagram of a physical
ground station. This diagram is helpful in

1. Tracking Equipment
2. Tracking Services

3. Applications

Virutal Ground
Station

Steer the Antenna

Configure the
Transceiver

7
Steve Bernier 15th Annual/USU Conference on Small Satellites

defining the initial classes shown at the end of
this section.

Services of layer 1 are illustrated with two
use-cases shown in Figure 5. It points out that
a virtual ground station needs to be able to
steer an antenna and configure a transceiver.
Here’s a description of the functionality
provided by the services.

+ Antenna Steering: this service is used to
change or obtain the direction where the
antenna is pointing. Two angles define this
direction: azimuth and elevation. The azimuth
varies between –180 and 180 degrees. The
elevation varies between 0 and 180 degrees.

+ Transceiver Configuration: this service is
used to communicate with a Satellite. The
transceiver must offer services to be turned on
and off as well as services to select a
communication frequency and mode.

Figure 6. Layer 2 Use Cases.

Figure 6 illustrates the four use-cases of layer
2 services. It shows that a virtual ground
station needs to be able to compute a
satellite’s position, track it, make pass
predictions and provide general information

on itself. Here’s a description of the
functionality provided by the services.

+ Satellite Position Computing: this service is
used to obtain a satellite’s position at a
specific time. This position is defined by a
longitude, a latitude, and an altitude relative to
the center of the Earth.

+ Satellite Tracking: this service is used to
start and stop tracking sessions. To do so, it
uses the name of a satellite. The
communication mode and frequency are
automatically chosen. During a tracking
session, it is responsible for using other
services to compute the satellite’s position,
adjust the radio frequency to cope for Doppler
shift, and steer the antenna based on the
ground station location.

+ Pass Prediction: this service is used to
create a pass prediction for a satellite and a
ground station location. It can be used to
determine the next pass or any pass during a
specified period.

+ Ground Station Information: This service is
used to provide the name of the owner of the
ground station and to provide the location of
the ground station in terms of longitude,
latitude, and altitude. In addition, it provides
the minimum elevation angle the antenna must
positioned to before a line of sight can be
established with satellites. For example, it is
possible that a mountain next to the ground
station blocks the first 4 degrees of elevation
of the antenna. In this case, the minimum
elevation is set to 4.

All of the above services are provided by the
virtual ground station and must be available
through the Internet. End-user applications
can use these services and the WATOO GUI
client is an example of such an application.
Figure 7 shows how a virtual ground station is
viewed from a network.

Virutal Ground
Station

Compute Satellite
Position

Track a Satellite

Make a Pass
Prediction

Get Ground Station
Information

8
Steve Bernier 15th Annual/USU Conference on Small Satellites

Figure 7. A Virtual Ground Station Component
View.

Figure 8. Initial Class Diagram of the Four Main
Components.

Based on Figure 7, it is easy to derive three of
the four main classes of our design. Those
classes are named Transceiver, AntennaRotor,
and GroundStation. The first two classes will
provide the layer 1 services. The
GroundStation class provides the tracking and

information services of layer 2. The fourth
main class is called SatelliteTracker and is
responsible for both computing the satellite’s
position and for making pass predictions.
Thus, the SatelliteTracker provides the
remaining services of layer 2. The reason why
they’re not provided by the GroundStation is
that there are many different algorithms for
computing satellites position. Therefore,
isolating those services in a separate class
makes them easier to customize. The initial
UML6 class diagram is shown in Figure 8.
This diagrams shows that the GroundStation
is composed of one AntennaRotor, one
SatelliteTracker, and one RadioDriver. The
cardinality also indicates that the classes part
of the GroundStation can only be part of one
GroundStation at the time.

During the analysis phase, the main classes
and their initial methods are defined. In the
design phase, the definition of these main
classes is refined and all utility classes are
identified. To avoid repetitive diagrams, the
refining process will not be described in this
paper. A detailed description of all the classes
is included in the first author’s master’s
thesis7. This paper will only introduce the four
main classes and their important utility
classes.

Figure 9 presents a detailed definition of the
GroundStation class and its utility class
Position. As shown in the class diagram, the
GroundStation provides two methods to start
and stop tracking sessions. To start a tracking
session, it is necessary to provide a Satellite
object as well as communication modes and
frequencies. Other methods provide
information like the name of the ground
station, its position and its minimum elevation
angle. Finally, additional methods provide
access to the tracking components. As shown
in the class diagram, all three classes
SatelliteTracker, Transceiver, and
AntennaRotor are declared “Abstract”. For the

AntennaRotor

RadioDriverSatelliteTracker

GroundStation 1 1

1

1

1

1

11

1

1

1

1

WATOO
Client

Other
Client

 Internet

Virtual Ground
Station

Transceiver Antenna Rotor
Controller

9
Steve Bernier 15th Annual/USU Conference on Small Satellites

GroundStation, this represents a guaranty that
these classes will always have the same
interface. It is also a guaranty to the
developers that any of these three classes can
be changed without modifying the
GroundStation class. That is, if the
customized class extends the appropriate
abstract class.

Figure 10. Tranceiver Class Definition.

The Tranceiver class, as shown in Figure 10,
provides services to configure both frequency
and the mode. The frequency is specified in

MHz as a string of the following format:
“xxxx.yyyyy”. The mode is also specified as a
string for which the following values are
accepted: “LSB”, “USB”, “CW”, “CWN”,
“FM”, and “FMN”. Predefined class attributes
are provided for this purpose.

Figure 11. AntennaRotor Class Definition.

The AntennaRotor class is defined as shown in
Figure 11. It provides services to obtain and
change the antenna pointing through the use of

Direction

getAzimuthInDegree () : Double
getAzimuthInRadian () : Double
getElevationInDegree () : Double
getElevationInRadian () : Double
setAzimuthInDegree (deg : Double) : void
setAzimuthInRadian (rad : Double) : void
setElevationInDegree (deg : Double) : void
setElevationInRadian (rad : Double) : void

AntennaRotor

getAzimuth () : Double
getElevation () : Double
getDirection () : Direction
setAzimuth (azimuth : Double) : void
setElevation (elevation : Double) : void
setDirection (direction : Direction) : void

<<Abstract>>

1

1

1

1

AntennaRotor
<<Abstract>>

PositionSatelliteTracker
<<Abstract>>

Transceiver
<<Abstract>>

1

1

GroundStation

getName () : String
getPosition () : Position
getMinimumElevation () : Integer
getSatelliteTracker () : SatelliteTracker
getTransceiver () : Transceiver
getAntennaRotor () : AntennaRotor
startTracking (satellite : String) : Boolean
stopTracking () : Boolean

1

1

1

1 1

1

1

1

Satellite

1

1

1

1 1

1

Figure 9. GroundStation Class Diagram.

Transceiver
$ LSB : String
$ USB : String
$ CW : String
$ CWN : String
$ FM : String
$ FMN : String

setMode (mode : String) : Boolean
setFrequency (freq : String) : Boolean
getMode () : String
getFrequency () : String
turnOn () : Boolean
turnOff () : Boolean

<<Abstract>>

10
Steve Bernier 15th Annual/USU Conference on Small Satellites

two angles: azimuth and elevation. Also
shown in the figure is the Direction class
which is simply a helper class to simplify the
manipulation of the two angles.

Figure 12. SatelliteTracker Class Definition.

Figure 12 shows the SatelliteTracker class. It
is used to obtain a satellite’s position based on
either real time or a specific time. The satellite
selection is done by calling the setSatellite
method using a Satellite object. The Satellite
class is a helper class. It is a placeholder for
the Keplerian elements describing a past
location of the satellite. The algorithm

implemented within the getSSPAt method uses
that information to compute the position of a
satellite. The getPrediction method returns a
pass prediction in a string table containing the
rise and set time of the satellite, the antenna
steering angles and Doppler shift for each
minute during the pass. Finally, the Position
class is another helper class very similar to the
Direction class.

Figure 13. IDL Specification for the GroundStation
Component.

As it was explained in the CORBA Basics
section, objects that have to be accessed
remotely need an IDL interface specification.
Consequently, the virtual ground station needs
an IDL specification (Figure 13) since it will
be used by remote end-user application such
as our WATOO GUI client. Other
components that need to be distributed also
require an IDL specification. For conciseness,
their IDL specification will not be presented in
this paper.

3.2 Implementation

This subsection starts with a description of the
tracking equipment of our real ground station.
Then it explains how we created a virtual
ground station using the application
framework described earlier.

#include “SatelliteTracker.idl”
#include “Transceiver.idl”
#include “AntennaRotor.idl”
#include “Position.idl”

interface GroundStation {
string getName();
Position getPosition();
long getMinimumElevation();
SatelliteTracker getSatelliteTracker();
Tranceiver getTransceiver();
AntennaRotor getAntennaRotor();
void startTracking(in string sattellite);
void stopTracking(); };

Satellite

getName () : String
getNumber () : Integer
getEpochTime () : Double
getMeanAnomaly () : Double
getMeanMotion () : Double
getInclination () : Double
getEccentricity () : Double
getArgOfPerigee () : Double
getRAAN () : Double
getRevolutionNumber () : Integer
getDecayRate () : Double

1
1

Position

getLatitudeInDegree () : Double
getLatitudeInRadian () : Double
getLongitudeInDegree () : Double
getLongitudeInRadian () : Double
setLatitudeInDegree (deg : Double) : void
setLatitudeInRadian (rad : Double) : void
setLongitudeInDegree (deg : Double) : void
setLogitudeInRadian (rad : Double) : void
getAltitude () : double

SatelliteTracker

setSatellite (sat : Satellite) : Boolean
getSatellite () : Satellite
getSSP () : Position
getSSPAt (time : Calendar) : Position
getPrediction (startTime, endTime, minElevation)

<<Abstract>>

1
1

11
Steve Bernier 15th Annual/USU Conference on Small Satellites

Our ground station is equipped with a
transceiver, an antenna rotor controller and a
personal computer. The transceiver is a Yaesu
FT-736R model. The PC can control it
through the serial interface. The rotor
controller is also from Yaesu and can be
controlled by the PC using a Kansas City
Tracker (KCT) interface. The PC we used
runs both Windows NT version 4 and RedHat
Linux version 5.

Figure 14. TwoBodySatelliteTracker Class
Definition.

The first step in developing a virtual ground
station is to implement the SatelliteTracker
class. This class provides some layer 2
services. However, since all layer 2 services
are not related to the tracking equipment, they
are platform independent when implemented
using JAVA. Consequently, once a
SatelliteTracker is implemented, it can be
used as-is for any virtual ground station. For
the WATOO project, a two-body8 satellite
tracker has been implemented using JAVA.
Since this SatelliteTracker is provided with
our WATOO software, this first step isn’t
necessary where JAVA is available. Figure 14
illustrates the class definition of the two-body
satellite tracker we developed. Not shown on
the diagram are the private utility methods
implemented to support getSSPAt which is the
only method that must be implemented.

The second step is to implement the two
classes that provide the layer 1 services:
Transceiver and AntennaRotor. In our case,

the Tranceiver needs to control a Yaesu FT-
736R through a serial interface. The control is
done using a specific protocol that defines a
packet format, some commands and a byte
order. The Transceiver we implemented is
called YaesuFT736R and it uses JAVAComm9
to access the serial interface. JAVAComm is a
platform independent way if accessing serial
interfaces. Figure 15 shows the class
definition of our specialized Transceiver with
the methods that had to be implemented.

Figure 15. YaesuFT736R Class Definition.

Figure 16. KansasCityTracker Class Definition.

The AntennaRotor we implemented is called
KansasCityTracker as shown in Figure 16. It
lists the only four methods that need to be
implemented. Communication with the KCT
interface is done through a memory mapped
port using a bit-wise protocol. JAVA allows

TwoBodySatelliteTracker

getSSPAt (time : Calendar) : Position

SatelliteTracker
<<Abstract>>

Transceiver
<<Abstract>>

YaesuFT736R

setMode (mode : String) : Boolean
setFrequency (freq : String) : Boolean
turnOn () : Boolean
turnOff () : Boolean

AntennaRotor
<<Abstract>>

KansasCityTracker

getAzimuth () : Double
getElevation () : Double
setAzimuth (azimuth : Double) : void
setElevation (elevation : Double) : void

12
Steve Bernier 15th Annual/USU Conference on Small Satellites

direct memory access but it has to be done
with the JAVA Native Interface (JNI)10 which
breaks the platform independence.
Consequently, our AntennaRotor
specialization is platform dependent as
opposed to our Transceiver. However, we
designed the KansasCityTracker such that
most of it is written in pure JAVA. The
platform dependant code is limited to only
three lines of C code for Linux and
approximately 30 lines for WindowsNT4.

Figure 17. Virtual Ground Station Configuration
File.

The last step in developing a virtual ground
station is to create a configuration file to be
read by GroundStation. This file (Figure 17)
supplies ground station information such as its
name, its location and its minimum elevation
angle. The file also dictates which
AntennaRotor class, Transceiver class, and
SatelliteTracker class the virtual ground
station should use. These classes can be
changed and used without recompiling the
GroundStation. This is made possible by the
JAVA’s dynamic loader10.

Once the layer 1 one classes are crated, all that
needs to be done is load the GroundStation
object. This object starts by reading the
configuration file and instantiates the classes

that will be providing the layer 1 and 2
services. Then, uses them during tracking
sessions.

Thanks to the framework design of the virtual
ground station, only two classes need to be
implemented for each different station:
Transceiver and AntennaRotor. In fact,
because the Transceiver class we implemented
(ie: YaesuFT736R) is platform independent,
we were able to use it as-is on both Linux and
Windows. Thus, when we created the
windows version of our virtual ground station,
all we had to do is adapt the
KansasCityTracker. Everything else,
including the SatelliteTracker, remained
unchanged.

4. GUI Client Application

The client application also had to be
redesigned because it wasn’t CORBA capable.
Also, the GUI was migrated from a developers
testing tool to a more aesthetic end-user
application. This section describes the new
WATOO GUI client through different screen
shots.

First, lets start with the tracking window
shown in Figure 18. This window contains an
equidistant projection of the earth on which
the position of each selected satellites is
plotted. In this example, the satellites are from
the Iridium constellation. To add a satellite to
the projection, its name must be typed in the
upper-left corner text field. After a satellite
has been added, the plotting needs to be
started with the time-related buttons show in
Figure 19. The slider shown on the same
figure is used to make time go forward or
backward. As you can see in Figure 20, the
projection contains a ground station named
Sherbrooke. Although the GUI client doesn’t
provide a way of adding more ground stations,
the projection can take any number of them.

groundStation.name = Sherbrooke1
groundStation.position.latitude = 45.24
groundStation.position.longitude = -71.46
groundStation.position.altitude = 0.225
groundStation.minimumElevation = 3

satelliteTracker.className=

TwoBodySatelliteTracker

antennaRotor.className = KansasCityTracker
antennaRotor.instantiationParms = 03e0

transceiver.className = YaesuFT736R
transceiver. instantiationParms = COM2

13
Steve Bernier 15th Annual/USU Conference on Small Satellites

Figure 19. Tracking Window Time Related
Controls.

Figure 20. Sherbrooke Ground Station.

To start a tracking session, both a satellite and
a ground station must be selected. Clicking on
them in the projection window does this. To
show that a selection has been made, the status
bar at the bottom of the projection window
displays tracking information. When the
satellite’s footprint reaches the ground station,
the tracking session begins. From that
moment, and until the satellites sets, the
information of the status bar is displayed in a
different colour.

However, until the ground station’s naming
server hasn’t been specified, the tracking
session doesn’t actually occur physically. The
reason for this is that the GUI client doesn’t
know where to get the ground station’s
CORBA services. Therefore, the address of a

Figure 18. Equidistant Projection Window of the WATOO Tracking Application.

14
Steve Bernier 15th Annual/USU Conference on Small Satellites

naming server must be provided as shown in
Figure 21. Clicking on the “Enable ORB”
button of the tracking window opens that
configuration window. One thing to mention
is that the GUI client allows more than one
projection window to be opened at one time.
This means that it is possible to start more

than one tracking session concurrently.

Figure 21. CORBA Naming Server Configuration

5. Conclusion

The number of LEO satellites increases each
year. They offer increasingly sophisticated
services that are used by scientists from all
around the world. Some radio amateur
satellites even provide packet communication
services. The utilisation of LEO satcom
services requires ground stations that are
expensive and complex to employ. As a result,
ground stations are quite uncommon and
inaccessible which limits the use of LEO
satcom services.

The contributions presented in this paper
address the accessibility of satcom services
through the concept of a virtual ground station
connected to the Internet. We have
demonstrated that this concept increases
accessibility of tracking equipment since we
were able to launch tracking sessions from
remote cites. Furthermore, we realized during

the course of our project that it would be
possible to launch extended tracking sessions
using many different ground stations
successively. This new type of tracking
session offers a great potential in terms of
reducing the intermittence of satcom services.

The virtual ground station presented is
designed such that it is easy to adapt to
different tracking equipment. In addition, it
has been implemented using technologies such
as JAVA and CORBA for maximum platform
independence. Only three days were required
to create a windows version of our Linux
virtual ground station. An example of a client
tracking application capable of using a virtual
ground station was presented as well. This
GUI is also platform independent and
illustrates how satcom services could be used
through the Internet.

In summary, the results of our research can be
used to address some of the problems related
to LEO satcom services, which was the goal
of project WATOO.

5.1 Future Work

To better support extended tracking, the GUI
client could be modified in order to automate
the successive selection of ground stations. In
addition, the client could be improved by
enabling users to save tracking session
configurations, select more than one satellite
to track, etc.

The virtual ground station could be enriched
with new tracking equipment such as a virtual
terminal node controller (TNC). This would
enable the end-user application to get a hold
of the digital information transmitted from a
satellite.

Finally, prior to its public released, the virtual
ground station would require modifications

15
Steve Bernier 15th Annual/USU Conference on Small Satellites

regarding security and access control. To this
end, CORBA’s access control and security
services would have to be investigated.

6. Acknowledgments

Special thanks to Denis Thibault for his
implementation of the two-body satellite
tracking algorithm.

7. References

1. Normandeau, M. and M. Barbeau, “Object-

Oriented Modeling of a Satellite
Tracking Software” Proceedings of the
15th ARRL and TAPR Digital
Communications Conference, Seattle,
September 1996.

2. Normandeau, M. and S. Bernier and J.-M.

Desbiens and M. Barbeau, “WATOO: an
Internet Access Software to a Satellite
Tracking Session” Proceedings of the
15th AMSAT-NA Space Symposium,
Toronto, October 1997.

3. Baker, M.S., “SBSat: LX200 Satellite

Tracking” www.sb-software.com .

4. Schretter, S.J., “Remote Operation of a

Ground Station” www.sjsi.com/w4mq .

5. Wilkinson, M., and Dr. C. Swenson,

“Design of a Satellite Tracking Station
for Remote Operation and Multi-User
Observation” Proceedings of the 13th
Annual AIAA/USU Conference on
Small Satellites, 1999.

6. Muller, P.-A., Instant UML, WROX Press

Inc., 1997.

7. Bernier, S., “Conception et Implantation

Basées sur des Composants Répartis

d’une Station Terrestre Virtuelle de
Communication Satellite” Master’s
thesis, Université de Sherbrooke, 2000.

8. Davidoff, M., The Satellite Experimenters

handbook, The American Radio Relay
Ligue Press, 1994.

9. JAVAComm, Sun Microsystems Inc.,

java.sun.com/products/javacomm .

10. Topley, K., Core Java Foundation Classes,

Prentice Hall, 1998.

